Proactive Risk: Managing, Mitigating, and a Case Study in Election Security

Natalie M. Scala, Ph.D. NATO 15th Operations Research and Analysis Conference October 2021

Cyber Risk: Reactive to Proactive

- User problem (threat) vs. data problem (risk)
 - Insiders, cyber concerns, etc.
- Shift from reactive to proactive policies to manage
- Reactive: Protection and privacy of data itself
 - Secure email, web monitoring, phishing, breaches
- Proactive: Prevention by means of a centralized policy or process
 - Working to prevent before occur

Metrics: Two Definitions

- Cybersecurity: Best practices, predictive measures
- Analytics: Descriptive
- Very hard to define
- Great interest to the intelligence community
- Definitions align with approaches and how define security space
- Level of risk
 - Willing to take on?
 - Level needed?
 - What is appropriate?

Insiders are Part of the Solution

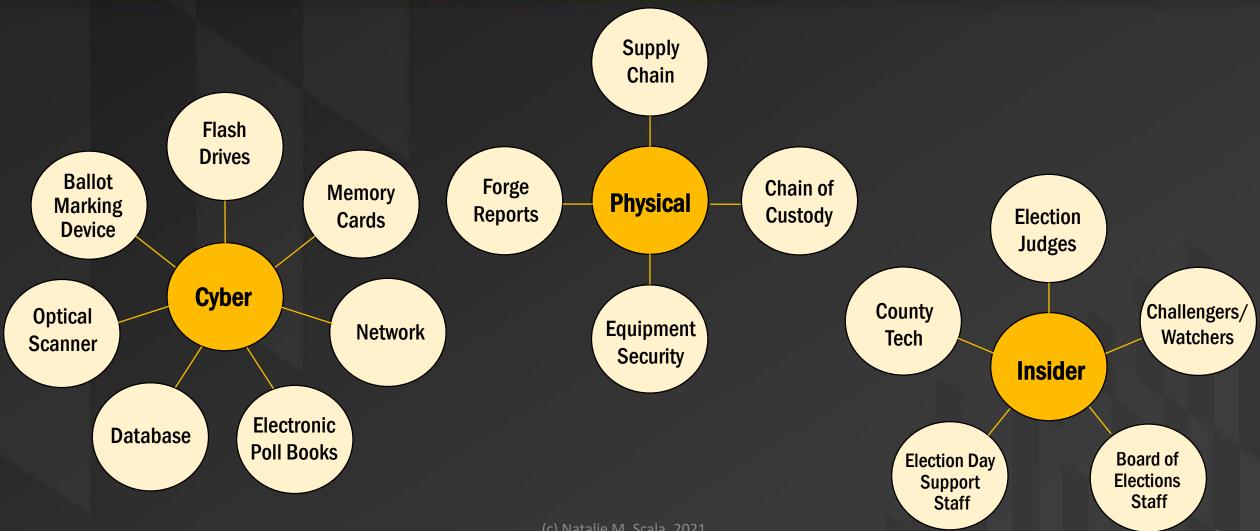
- Non-malicious insiders become part of the solution
 - Empower with solutions
 - Positive feedback loops
- Break bottlenecks of workarounds
- "See something, say something"
- Human behavior drives degree of inherent risk
 - Approach questions, interact with systems, behaviors
 - Coach from on the ground
 - How does your team work?
- NSA Hard Problem

Consider Threat Systemically

- Cyber, physical, insider
- Human behavior is only one approach

Case Study: Election Security

- U.S. Help America Vote Act (2002): Sweeping reforms to voting processes
 - Voting systems, voter access
 - Punch cards
- Department of Homeland Security (2017): 21 states target of attacks to voting systems during the 2016 Presidential Election
- Senate Intelligence Committee (2019): Election systems in all 50 states targeted in 2016
- Robert S. Mueller, III (2019): Interference ongoing
- DHS (2017): Election infrastructure is critical infrastructure
 - Voting systems, storage of ballots and equipment, associated infrastructure
 - Government Facilities sector


Systemic Threats

- First academic team to define threats systemically in elections
- Framing extends beyond elections
- Cyber
 - Digital machines and media
 - Regardless of Internet connection
- Physical
 - Tampering with or disrupting equipment
- Insider
 - Adversaries and insiders
 - Simple, honest mistakes
 - Deliberate actions with ill-harm effects

Sources of Threat

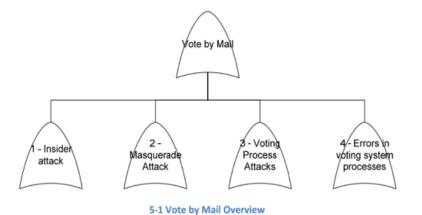
What about COVID-19?

- Crowding, lines, sick poll workers are problems
- Constant state of flux, plans changing, shifts in process
 - 40% of states had process change in primary
 - 47 states continued with expanded mail for General Election
- Need access in place
 - Safe, socially distant methods of voting
- Attacks on legitimacy of mail votes
 - Political discourse, (mis)information
 - Social media, instructions, messaging
- What does the data say?
 - Mix of mail with in-person voting adds complexity
 - Harder for adversary to infiltrate, less impact or value

Who was Targeted in 2016?

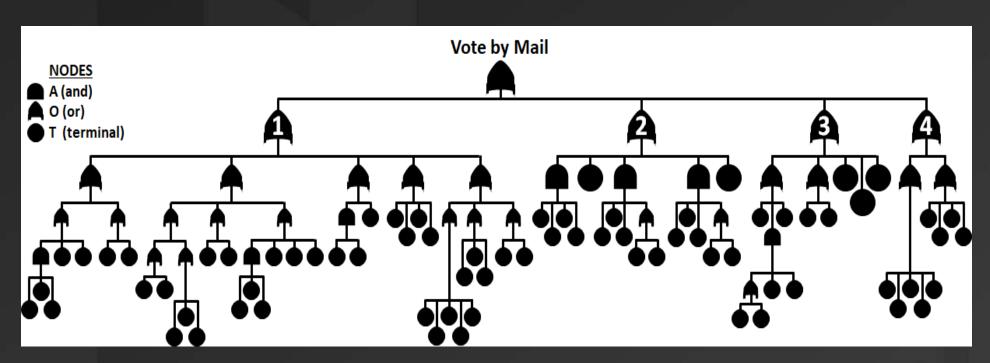
	Targeted	Non-Targeted
# standardized states + D.C.	9	7
# non-standardized states + D.C.	12	23
% standardized equipment	56.25%	43.75%
% non-standardized equipment	34.29%	65.71%
% voting red in 2016	52.38%	60.00%
% voting blue in 2016	47.62%	40.00%

- Center for American Progress report (2018)
- Targeted status in 2016 via DHS (*The Washington Post*, 2017)
- Data coded and available at www.drnataliescala.com/projects


Attack Trees and Risk Analysis

- Attack tree is inventory of risks
 - Does not identify strength or likelihood
 - Threats and scenarios: Systemic sources
- Decompose complex actions into hierarchical levels
- Graphic representation of security problem
- EAC data: Much has changed
 - 8 states fully or mostly mail voting
 - COVID-19
 - Adaptive adversary

Vote by Mail Attack Tree (EAC, 2009)



noc	de t	ype -	outli	ne numbe	r - threat ac	tion
0	1	Insid	er att	ack		
	0	1.1	Edit	Marked Ba	llots	
		0	1.1.1	Edit at L	ocal Electio	ns Office
			Α	1.1.1.1	Edit During	Duplication
				Т	1.1.1.1.1	Form Collaboration of PWs
				Т	1.1.1.1.2	Gain Exclusive Access to Ballots
				Т	1.1.1.1.3	Mark under/overvotes or change votes
			Т	1.1.1.2	Edit During	Counting
			Т	1.1.1.3	Edit During	Other Handling
		0	1.1.2	Edit in T	ransit	-
			Т	1.1.2.1	Edit in Pos	t Office

- Insider threats, external threats, voter error
- Hierarchy consists of *or*(O), *and*(A), *terminal*(T) nodes

Vote by Mail Attack Tree (EAC, 2009)

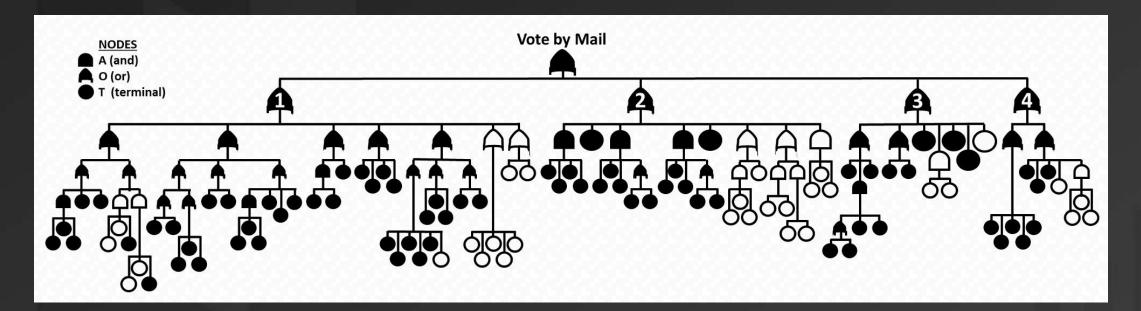
- Threat scenarios
 - Insider = 32
 - External = 16
 - Voter error = 9
 - Total = 57

Investigating Attack Tree Revisions

Needs

- Pandemic implications
- Threats to critical infrastructure
- Adaptive adversary

Validation


- Boards of Elections
 - Maryland counties

Sources of data

- Mainstream, non-partisan news articles
 - January through August 2020
- Bipartisan or non-political think tanks
- Academic centers
- Voter instruction sheets
- State-created documentation
- Price, et al. (2019)
- Locraft, et al. (2019)
- Scala, et al. (2020) & modules
- Poll worker training manuals

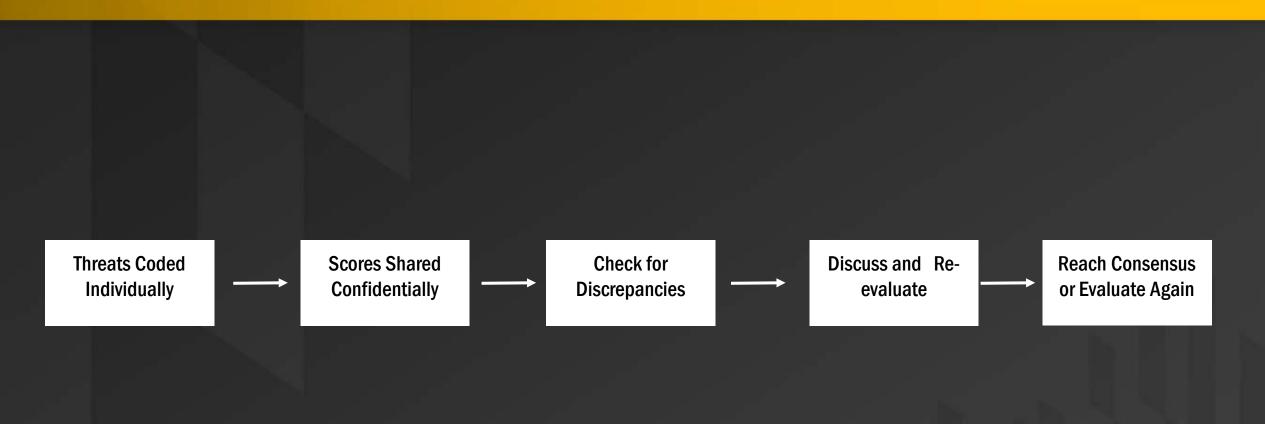
Updated Attack Tree

- 30 new threats
- Threat scenarios
 - Insider = 40
 - External = 23
 - Voter error = 10

What are the New Threats?

Node	Vulnerability	Branch
X ₇₃	Form collaboration with mail worker and acquire access	Insider
X ₇₄	Break into post office	Insider
X ₇₅	Form collaboration with mail worker and acquire access	Insider
X ₇₆	Break into intermediate mail room	Insider
X ₇₇	Manipulate return envelope	Insider
X ₇₈	Misallocate polling or drop-box locations	Insider
X ₇₉	Provide regional mail-in voting misinformation	Insider
X ₈₀	Hinder or suppress regional postal services	Insider
X ₈₁	System outage	Insider
X ₈₂	Name deliberately misspelled on ballot	Insider
X ₈₃	Paper ballot scanner hacked	Insider
X ₈₄	Vote denied or altered	Insider
X ₈₅	Identify target	External
X ₈₆	Acquire access to drop box	External
X ₈₇	Alter marks and return their ballots	External

Node	Vulnerability	Branch
X ₈₈	Destroy drop box	External
X ₈₉	Gain exclusive access to ballot storage	External
X 90	Alter marks and return to storage	External
X ₉₁	Gain exclusive access to ballot storage	External
X ₉₂	Steal/destroy ballots	External
X ₉₃	Steal blank ballot from mailbox	External
X ₉₄	Mark and return their ballot	External
X ₉₅	Defeat signature check	External
X ₉₆	Paper ballot scanner hacked	External
X ₉₇	Vote denied or altered	External
X ₉₈	Invalid ID card attack	External
X ₉₉	Error in instructions	Voter error
X ₁₀₀	Unclear assistance instructions when not required	Voter error
X ₁₀₁	Ballot says ID required when not required	Voter error
X ₁₀₂	Expired Voter ID	Voter error


Strength or Likelihood of Threat

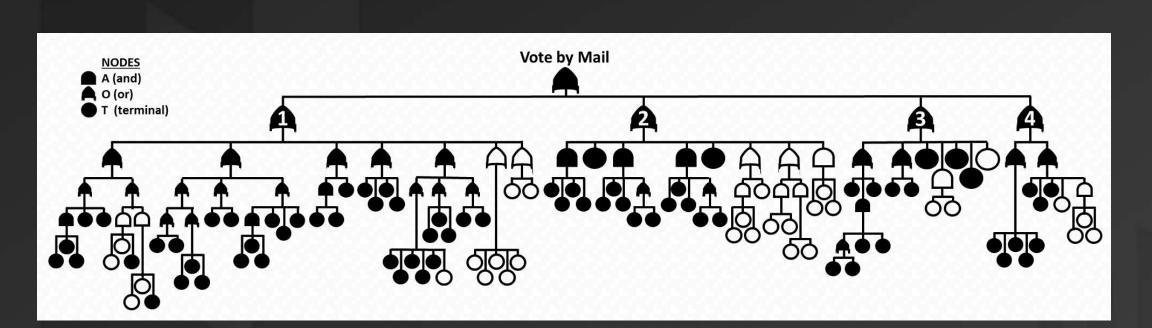
- Consider utility on three dimensions
 - Attack cost (AC) u_1
 - Technical difficulty (TD) u_2
 - Discovering difficulty (DD) u_3
- Terminal nodes
- Criteria adapted from Du and Zhu (2013)

Attack Cost (AC)			nical Difficulty (TD)	Discovering Difficulty (DD)		
Grade	Standard	Grade	Standard	Grade	Standard	
5	Severe consequences likely	5	Extremely difficult	1	Extremely difficult	
4	High consequences likely	4	Difficult	2	Difficult	
3	Moderate consequences likely	3	Moderate	3	Moderate	
2	Mild consequences likely	2	Simple	4	Simple	
1	Little to no consequences likely	1	Very simple	5	Very simple	

Assessing Utility: Delphi Method

Calculating Relative Likelihood

• Relative likelihood for each terminal node X_i:


$$P(X_j) = w_1 u_{1j} + w_2 u_{2j} + w_3 u_{3j}$$

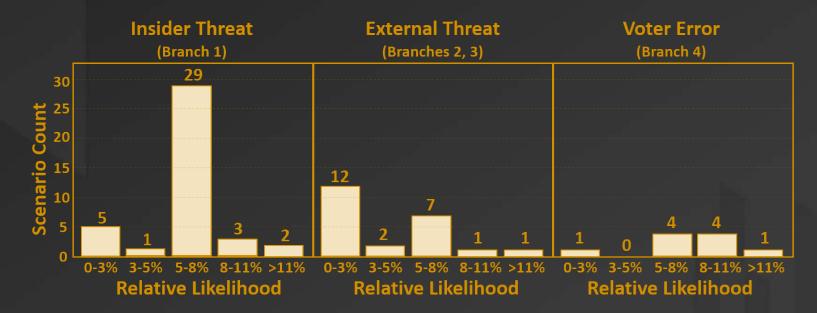
- $j \in \{1, 2, \dots, n\}$, *n* terminal nodes
- *w_k*, *k* ∈ {1, 2, 3}, weight assigned to utility function *k*; ∑ *w_k* = 1 *w_k* = ¹/₃ ∀*k*
- $u \in [0, 1]$, using scale factor (0.2) to convert ordinal scales

Terminal Node	AC	TD	DD	Relative Likelihood	Terminal Node	AC	TD	DD	Relative Likelihood
T 1.1.1.1 (X ₁)	4	2	2	0.08	T 2.1.3 (X ₄₀)	5	2	3	0.07
T 1.1.1.1.2 (X ₂)	4	3	2	0.07	T 2.1.4 (X ₄₁)	4	2	1	0.12
T 1.1.1.1.3 (X ₃)	3	4	2	0.07	T 2.2 (X ₄₂)	5	2	2	0.08
T 1.1.1.2 (X ₄)	5	3	3	0.06	T 2.3.1 (X ₄₃)	4	3	3	0.06
T 1.1.1.3 (X ₅)	3	4	3	0.06	T 2.3.2 (X ₄₄)	4	2	3	0.07

What about Scenarios?

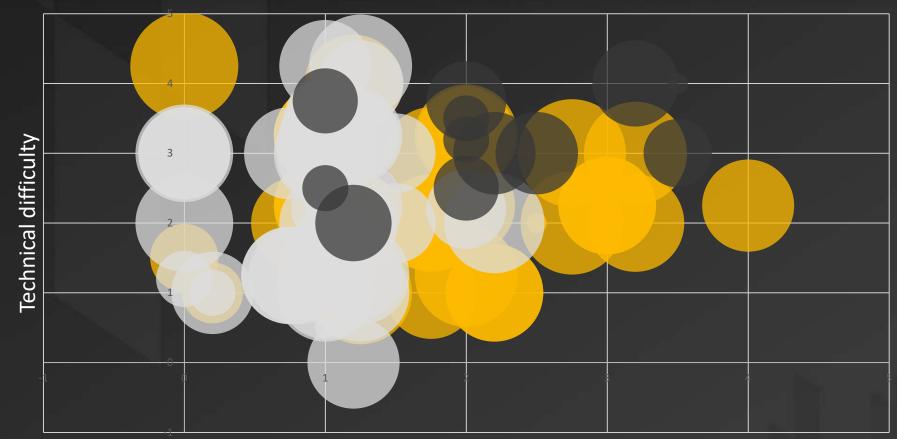
- Threat scenarios
 - Insider = 40
 - External = 23
 - Voter error = 10
 - Total = 73

Relative Likelihood for Scenarios


- For an attack scenario $S_i = (X_{i1}, X_{i2}, \dots, X_{iN})$
 - AND structure: $P(S_i) = P(X_{i1})P(X_{i2}) \dots P(X_{iN})$
 - **OR structure:** $P(S_i) = P(X_{i1})$
- Least likely: High cost, difficult to pursue, easy to discover

Attack Sequence	Leaf Node(s)	Relative Likelihood	Attack Sequence	Leaf Node(s)	Relative Likelihood
S ₁	X ₁ , X ₂ , X ₃	0.0004	S ₃₈	X ₈₂	0.0600
S ₂	X ₄	0.0600	S ₃₉	X ₈₃	0.0600
S ₃	X ₅	0.0600	S ₄₀	X ₈₄	0.0700
S ₄	X ₇₃ , X ₇₄ , X ₆	0.0002	S ₄₁	X ₃₈ , X ₃₉ , X ₄₀ , X ₄₁	0.0000

Scenario Likelihood



- Insider: Majority of scenarios
- External: Very low relative likelihood
 - External actors may not be interested or incentivized
- Voter error: Only 13.7% of total scenarios

Threat Impact on Mail Voting

Attack cost

- Considering attack cost, technical difficulty, discovering difficulty
- Yellow = insider threats, white = external threats, black = voter error threats

Threats of Most Concern

Scenario		Threat	Relative Likelihood	Branch
S ₇	X ₉	Errant failed signature	0.12	Insider
S ₁₂	X ₁₄	Accidental loss	0.10	Insider
S ₂₃	X ₂₈	Fail to stuff envelope	0.11	Insider
S ₃₂	Х ₃₆	Lost in destination mailroom	0.13	Insider
S ₄₇	Х ₅₃	Malicious "messenger ballots"	0.10	External
S ₅₈	X ₆₁	Debate and vote parties	0.12	External
S ₆₄	Х ₆₅	Failure to sign correctly	0.13	Voter Error
S ₆₆	Х ₆₇	Failure to bundle correctly	0.11	Voter Error

- No new threats identify as high concern
- Quick move to mail-based voting due to COVID-19 does not necessarily make the process less safe
- Threats in bold are most likely for branch

Case Study Takeaways

- Consider likelihood of threat
- Attack trees can frame a security problem
- Majority of threat scenarios are tied to insider actions
- Extends into future as mail voting will continue to be used
 - Mail-based voting not as attractive for the adversary
 - Increases voter access
 - Consider U.S. voting policy and proposed legislation
- Greater awareness of where vulnerabilities may exist and relative likelihood
 - Enable officials to apply security measures more effectively and efficiently

Managing Insiders

- Proactive training
- Assist with policy compliance
- System design and collaboration in policy design
- Continuous improvement
- Training and awareness to identify and mitigate
- Trusted insider empowered to become part of the solution

Example: Elections Security

- Poll worker training
- Sections
 - Background/Introduction
 - Equipment Use
 - Cyber Threats
 - Insider Threats
 - Physical Threats
- Self Assessment Questions
- Certificate of Completion
- Timing: About a week before the election
- Online, at home

Security Training for Election Judges - Ensuring Pollbook Security

Supply Chain Management

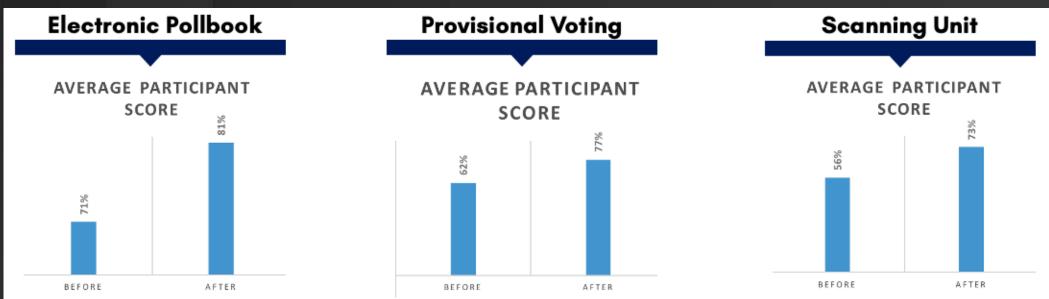
TOWSON

Cyber Threats	1	Background
In this section, we will work to reduce the chances of a cyber threat within our polling locations.	2	Introduction
As an Electronic Pollbook/Check-In Judge, you can reduce the chance of unauthorized equipment/data tampering through	2	Introduction
remote access using electronic devices in the polling location.	2	Equipment
You can reduce cyber threats by:	3	Management
 NOT using your cell phone or any other electronic device while at the polling location. Cell phone/technology usage is PROHIBITED for voters and Election Judges in the polling place. Use of any technology poses a silent but dangerous cyber threat to our elections and must be removed 	4	Cyber Threats
IMMEDIATELY.		In sides Thus sta
 Being aware of suspicious and/or adverse behavior and actions. 	5	Insider Threats
 Watching over other Election Judges, observers, voters, and election material. Providing assistance ONLY when you are available. Notifying the Chief Judge of ANY AND ALL suspicious or adverse behavior or actions from fellow Election Judges, 	6	Physical Threats
 o Individuals posing as Election Judges may attempt to tamper with election equipment/processes. 	7	Final Page
Cyber Threat Assessment		

You notice a fellow Electronic Pollbook Judge texting under the table with their cell phone. What should you do?

Politely ask them to put their phone away.

re


V

27

Training Works!

- Study to examine poll worker knowledge before and after the training
- Quiz scores increased (statistically significant)
 - Awareness of threat
 - Actions to identify, mitigate, and/or eliminate threats
- Usable and accessible

"I am a provisional judge but learned from the questions a lot of information that [Electronic] Pollbook and other judges must perform at the election polls." (c) Natalie M. Scala, 2021 – Research Participant

Managing Insiders in the Future

- Behavior intent
 - Ties to metrics for insider threat
- Security Behaviors Intentions Scale (SeBIS)
 - Egelman and Peer (2015)
 - Egelman, Harbach, Peer (2016)
- Accepted by usable security community to create characterizations
- Choosing passwords, securing devices, updating protocols, proactive awareness
- 16 questions, 5-point Likert scale
- Measure participant intentions and how those intentions may vary
- Does not measure or predict behaviors

Models for Behavior Intent

- Quantify uncertainty level in personal security intentions
 - Information sharing and patterns
- Identify extent intent connects to pattern of another variable (intention)
 - No presumption of correlation
- Identify infrastructure design actions needed
 - Address poll worker behavior, nature of intent, corresponding risk
 - Low resource environments
- Know your insider!

Proactive Modeling Impacts

- Artificial intelligence (AI) and machine learning (ML)
- Establish baseline patterns of behavior
- Use prediction capabilities to detect potential anomalies
 - Metrics
- Immediate concerns of profiling
- AI/ML good for quick classification and potential detection
 - Absent of human intervention
 - Human is still part of the process


What's the Root Cause Problem?

- Build policies and solutions to address
- Misinformation can detract from the root cause problem
- Case study election model
 - Models predicted what happened in U.S. Presidential Election
 - Very little fraud, secure process
- Need to think beyond the discourse and ways we've always solved these problems
- What are the root causes? How much risk willing to take on?
- How do we build cultures of security?

Questions and Discussion

Dr. Natalie M. Scala Email: nscala@towson.edu Web: www.drnataliescala.com

References

- ARLIS: Applied Research Laboratory for Intelligence and Security. (2021, March 30). *IRISS event summary #1: State of insider threat and insider risk paradigms.* https://arlis8.umd.edu/iriss-event-summary-1-state-insider-threat-and-insider-risk-paradigms-1
- Black, L., Scala, N. M., Goethals, P. L., & Howard II, J. P. (2018). Values and trends in cybersecurity. *Proceedings of the 2018 Industrial and Systems Engineering Research Conference.* https://tinyurl.com/BlackEtAl2018
- Dehlinger, J., Harrison, S., & Scala, N. M. (2021). Pollworker security: Assessment and design of usability and performance. *Proceedings of the 2021 IISE Annual Conference*. https://tinyurl.com/hvwde2ep
- Department of Homeland Security. (2020, July 14). *Election security.* https://www.dhs.gov/topic/election-security
- Du, S., & Zhu, H. (2013). *Security assessment in vehicular networks.* Springer.
- Egelman, S., Harbach, M., & Peer, E. (2016). Behavior ever follows intention? A validation of the Security Behavior Intentions Scale (SeBIS). *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*, 5257-5261.

References

- Egelman, S. & Peer, E. (2015). Scaling the security wall: Developing a Security Behavior Intentions Scale (SeBIS). *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*, 2873-2882.
- Horwitz, S., Nakashima, E., & Gold, M. (2017). DHS tells states about Russian hacking in 2016 election. *The Washington Post.* https://tinyurl.com/HorwitzEtAl
- Locraft, H., Gajendiran, P., Price, M., Scala, N. M., & Goethals, P. L. (2019). Sources of risk in elections security. *Proceedings of the 2019 IISE Annual Conference*. https://tinyurl.com/LocraftEtAl2019
- Mueller III, R. S. (2019). Former Special Counsel Robert S. Mueller, III on the Investigation into Russian Interference in the 2016 Presidential Election. U.S. House of Representatives Committee Repository, https://docs.house.gov/meetings/IG/IG00/20190724/109808/HHRG-116-IG00-Transcript-20190724.pdf
- Price, M., Scala, N. M., & Goethals, P. L. (2019). Protecting Maryland's voting processes. *Baltimore Business Review: A Maryland Journal*. https://www.cfasociety.org/baltimore/Documents/BBR_2019%20Final.pdf#page=38
- Root, D., Kennedy, L., Sozan, M., & Parshall, J. (2018). Election security in all 50 states. https://www.americanprogress.org/issues/democracy/reports/2018/02/12/446336/election-security-50-states/

References

- Sanger, D. & Edmonson, C. (2019, July 25). Russia targeted election systems in all 50 states, report finds. *The New York Times.* https://www.nytimes.com/2019/07/25/us/politics/russian-hacking-elections.html
- Scala, N. M., Dehlinger, J., Black, L., Harrison, S., Delgado Licona, K., & Ieromonahos, A. (2020). Empowering election judges to secure our elections. *Baltimore Business Review: A Maryland Journal*, 8-20.
- Scala, N. M. & Goethals, P. L. (2020). A model for and inventory of cybersecurity values: Metrics and best practices. In N. M. Scala and J. P. Howard II (Eds.), *Handbook of Military and Defense Operations Research* (pp. 305-330). CRC Press.
- Scala, N. M., Goethals, P. L., Dehlinger, J., Mezgebe, Y., Jilcha, B., & Bloomquist, I. (2021). Evaluating mail-in security for electoral processes using attack trees. Under review.
- United States Election Assistance Commission Advisory Board. (2009). *Election operations assessment: Threat trees and matrices and threat instance risk analyzer (TIRA)*. https://www.eac.gov/assets/1/28/Election_Operations_Assessment_Threat_Trees_and_Matrices_and_Threat_Instance_Risk_Analyzer_(TIRA).pdf
- United States Election Assistance Commission Advisory Board. (2018). *Help America Vote Act.* https://www.eac.gov/about/help-america-vote-act/